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SUMMARY 
A new method for generating finite element grids in two and three dimensions is developed. The method is 
based on a new search tree structure. The search tree is built upon triangles in two dimensions and 
tetrahedra in three dimensions. The density of elements can be varied throughout the computational 
domain. Efficient search algorithms for finding points in space and for finding the boundary of the domain 
have been developed. The speed of the grid algorithm will permit adaptive gridding during computation. 
The grid algorithm is generally applicable to both hydrodynamic as well as aerodynamic finite element 
computations. The technique has been used with success for gridding the North Sea- Skagerrak area. 

KEY WORDS Grid generation Tri-tree Unstructured 

INTRODUCTION 

A main problem in computational aerodynamics as well as hydrodynamics has been to construct 
a grid describing the geometry of the computational domain. In both aerodynamics and 
hydrodynamics it is important to have a grid of variable density in space in order to resolve high 
gradients in the solution. The grid generator should also have the capability of local refinements 
based on the solution of the differential equations at each time step. To be able to refine the grid at 
each time step, the grid generator must be very efficient. 

In recent years the automatic generation of unstructured grids has been paid intensive 
attention. Several algorithms building on different gridding techniques have been developed. The 
‘moving front’ algorithmlP4 starts with the boundary as a front and generates triangles or 
tetrahedra by selecting new points inside the geometry. As new triangles or tetrahedra arise, the 
front which is the base for generating new elements, moves into the geometry until the entire 
volume is triangulated. The advantage of the ‘moving front’ algorithm is that directional 
refinements can be achieved. In the ‘Delauney’ algorithm5-* points are substituted into the 
present triangulated volume. The algorithm is very simple in theory but severe problems are likely 
to occur during the triangulation process. For instace, the quality of the elements cannot be 
guaranteed and postprocessing of the elements is necessary to remove collapsing elements or to 
move points to obtain an acceptable grid. The major difficulty with ‘Delauney’ triangulation is to 
generate points inside the computational volume which do not introduce numerical difficulties.’ 
The ‘octree’ which is basically a tree search algorithm, has been used successfully as 
a basis for triangulation. The domain, which is divided into squares in two dimensions and cubes 
in three dimensions, forms a tree with pointers to the subdivisions. The leaves of the tree, which 
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are squares or cubes, are then triangulated in such a way that the neighbouring elements are 
compatible, valid mesh elements. This triangulation uses templates as well as element removal 
schemes. This method has been shown to be efficient and can be successfully coupled with 
'Delauney' triangulation.*, 

The work of Rivara" describes an efficient two-dimensional triangulation algorithm based on 
iterative application of four-triangle conforming mesh refinement algorithms. One advantage of 
this algorithm is that a lower bound for the angles in the triangles can be estimated. However, it is 
not trivial to see how this algorithm is extended to three-dimensional triangulation. 

The present method is also based on a tree search method similar to the quad-tree and oct-tree 
methods. Since the quad-tree and oct-tree algorithms produce triangles in two dimensions and 
tetrahedra in three dimensions, it seems more natural to build a tree structure on triangles and 
tetrahedra than on squares and cubes. The new tri-tree search method starts with a triangle or 
a tetrahedron which is subdivided into four new triangles or eight new tetrahedra respectively. 
The tri-tree structure then has pointers like the quad-/oct-tree. The main and essential difference 
is that the leaves in the tree consist of triangles and tetrahedra. The triangulation procedure of the 
tri-tree structure is then much simplified and will only cosist of connecting triangles or tetrahedra 
of different size. By introducing very mild restrictions on the tri-tree structure, which hardly 
affects the ability of local refinements, the triangulation procedure is very simple. The elements 
generated are optimal in the sense that the elements are equilateral triangles and tetrahedra, or at 
the interface of elements of different size, the equilateral triangles will be divided in two and the 
equilateral tetrahedra will be divided in two or four. 

During the triangulation procedure an efficient search algorithm is needed for finding points in 
space. In the present work a lexical tree search algorithm of the point co-ordinates has proved to 
be very efficient. The boundary of the computational domain is found by means of an algorithm 
that detects whether a point lies inside or outside the computational domain. The tri-tree grid 
generation method has been tested by both two- and three-dimensional triangulation of the 
North Sea-Skagerrak area. This domain is rather complex since islands and large depth 
variations are present. 

TRI-TREE DATA STRUCTURE 

In the tri-tree search algorithm, equilateral triangles and tetrahedra are used as basic domains. 
The equilateral triangles and tetrahedra are then divided into equilateral triangles (Figure 1) and 
tetrahedra (Figure 2). In two dimensions an equilateral triangle is divided into four triangles. In 
three dimensions an equilateral tetrahedron is divided into eight tetrahedra. The ordering of 
successive divisions is organized as a tree structure as shown in Figures 3 and 4. The tree structure 
needs nine integers in two dimensions and 14 integers in three dimensions in order to keep the 
necessary information at each level of subdivision. The first integer in the tri-tree record contains 
the level of the division. The initial triangle and tetrahedron are at level 1. When a division occurs, 
the level number is increased by one. The level number therefore indicates the degree of division 
and all triangles or tetrahedra of equal size will have the same level number. When a division is 
terminal, the level number is given a negative sign. In addition to the level number, a point index 
to each of the corners of the structure is stored. This is not strictly necessary because the co- 
ordinates of each point can be calculated when they are needed. However, if the corner points are 
stored, the computing time is reduced considerably. The next positions in the structured record 
are pointers to the records of the divisions. When a triangle or tetrahedron is terminal, some of 
these pointers are used as pointers to the neighbouring triangles and tetrahedra instead. The last 
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Figure 1.  The initial equilateral triangle consists of the corners TI = { P 1 ,  P 2 ,  PJ}. This triangle is divided into four new 
equilateral triangles: Tz = { P  f4, P5}, T3 = { P4, f2, f6}. T4= { P ,, f 6 ,  f3}, T, = { P 6 ,  P4, P , }  

Level Corners Pointers to rlivisrons Parent 

integer in the record points to the record of the parent triangle or tetrahedron. It is therefore 
possible to perform both up- and down-searches in the tri-tree. 

When searching for a tetrahedron which contains a given point, the tri-tree is traversed 
towards the root if the point is outside the present tetrahedron and towards the leaves if it is 
inside. Let the co-ordinates of the point be x, y, z, the area co-ordinates of the tetrahedron be Lk 
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P4 

Figure 3. The information on the tri-tree structure in two dimensions is contained in a record consisting of nine integers. 
The first integer describes the level of refinement. When this integer is negative, it indicates a terminal triangle. The next 
three integers are the indices to the corners of the present division. If the refinement level integer is positive, the next four 
integers point to the triangles into which the triangle is refined. If the triangle is terminal, the following three integers are 
pointers to the neighbouring triangles. If one of these integers is zero, the triangle has no neighbour in that direction. The 

last index points to the parent triangle 

and the co-ordinates of the nodes be xk, yk, z k  for k =  1,2,3,4. A simple test to exclude tetrahedra 
which do not contain the point is to decide if the point is outside the circumscribing box. If one or 
moe of the following conditions is valid, the point is outside the box: 

(maxkxk<X), k=l, 2, 3, 4, (1) 
(minkxk > x), k = 1, 2, 3, 4, (2)  

(maxkyk<Y), k = L  2, 3, 4, (3) 

(minkyk > y), k = 1, 2, 3,4, (4) 

(max, Zk < z), k = 1, 2, 3, 4, (5 )  

(minkzk > z), k = 1, 2, 3, 4, (6) 

If the point is inside the box, the following equation system has to be solved to determine if the 
point is inside the tetrahedron: 

If 

then the point is inside the tetrahedron. 
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, I  , I  

3 -2 p5 p2 p8 p9 0 7 0 0 1 

4 -2 p6 p 8  p3  p10 0 0 8 0 1 

5 I -2 p7 p 9  PI0 p4 0 0 0 9 

6 -2 p8 pS p6 p7 2 8 7 0 I 

7 -2 p i  p7 p8 p9 9 3 

When a triangle or tetrahedron is divided, the midpoint on each line between the corners is 
calculated. This point may already exist if the neighbour has a larger level number. If a point does 
not exist, it is added to the list of points. In order to be able to search for and add points fast, 
the list is organized as a binary tree. The binary tree is sorted lexically on the point co-ordinates 
x, y, z. A point with co-ordinates x, y, z is defined to be less than a point with cb-ordinates 
u, u, w if 

x < u  

or x = u  and y t v  (9) 
or x = u , y = u  and z<w.  

In order to find the neighbours of a tri-tree element, a search in the tri-tree is performed to find 
which tri-tree element contains a point slightly outside the edge or side of the present triangle or 
tetrahedron. The point to use in the tri-tree search is given by 

P = P, + (P, - P,)/d + &(PO - Pc). (10) 

0 6 I 

8 -2 p6 p8 p7 p10 9 0 4 6 I 

9 -2 p7 p9 p l 0  p8 0 8 7 5 I 



866 S .  0. WILLE 

In this expression P, is the centre of gravity and P, is a corner in the tri-tree element. The spatial 
dimension is d (d = 2 or 3) and E is a small constant which depends on the accuracy of the actual 
computer. If E is zero, P is the point where the line from the corner P, through the point of gravity 
hits the opposite edge or side. For small E the point P will be on the line from the corner through 
the point of gravity slightly outside the tri-tree element. E should be chosen so that the computer 
representation of 

P, + (P, - PJ/d # P, + (P, - P,)/d + E(Pg - P,) (1 1) 

in only two or three of the least significant digits. The point P defined in this way is a point slightly 
outside the element edge or side opposite to the corner P,. A search in the tri-tree for a tri-tree 
element which encloses a point can either start at the root of the tree or at the location of the last 
search. If the points which are searched for are introduced in a random fashion, it will be most 
efficient to start at the root of the tree. When a search for the point P defined above is performed, 
the a priori knowledge is that the point is enclosed in an adjacent tri-tree element. The probability 
is therefore great that the adjacent tri-tree element belongs to the same subtree. If the tri-tree 
element belongs to the same subtree, it is faster to start the search at the present location, or even 
better at one level above the present location, than from the root of the tree. On average, 
experiments indicate that it is most efficient to start the search at one level above the present. At 
each level the the four triangles in two dimensions and the eight tetrahedra in three dimensions 
are explored to find which one contains the point. 

DETECTION O F  THE BOUNDARY SURFACE 

In two dimensions the boundary is given by line segments. In three dimensions the boundary 
surface consists of triangles. During the triangulation procedure nodes are generated both inside 
and outside the computational domain. In a simple algorithm which is applicable for oceano- 
graphic problems, where the depth is given in equally spaced horizontal grid points, the x- and 
y-co-ordinates of a point can be used to look up the corresponding z-co-ordinate of the bottom. If 
a point is inside or outside the computational domain, then this is an easy decision. However, this 
algorithm is not general for other problems, e.g. gridding the domain around an aircraft, where 
the surface definition may consist of more than one point in some directions. 

A general algorithm for deciding whether a point is inside or outside the domain is therefore 
developed. From each point an arbitrary line is constructed. The number of times which this line 
intersects the boundary elements is counted, and if the number of intersections is an odd number, 
the point is inside the domain; if the number of intersections is even, the point is outside. Problems 
with this algorithm occur if the line is parallel to a boundary element or if the line hits an edge or 
a node in the elements. Both these situations can be detected and a new direction of the line is 
drawn by a stochastic number generator. The equation of the line is given by 

P = Po - t D, 

where Po is the point, P is a point on the line, D is the direction of the line and t is a scalar: 
(12) 

P=[ a ] .  Po=[ a;], D=[ 3. (13) 

Initially the direction D is chosen to be D = [i, 1'. The initial direction selected here is quite 
arbitrary. This choice of D works well in most cases and few stochastic drawings are necessary. 
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The equation system for the intersection of the line and the plane given by the three nodes in 
the triangle is 

First, boundary elements which obviously do not intersect the line are excluded by a simple 
test. Use one of the co-ordinates of the corner, xk, of the triangle to find the corresponding t .  

This t is used to compute the other two co-ordinates, which are the points on the line xo .  If only 
one of the conditions below is fulfilled, the line does not intersect the boundary triangle. 

yk>yo+tdy,  k = l ,  2, 3, 

Zk<ZO+td,, k = l ,  2, 3. 

If the above test fails, then it is possible tha the line intersects the boundary triangle and above 
equation system has to be solved. Two special cases have to be considered when the equation 
system is solved. 

(i) The line is parallel to the boundary element. 
(ii) The line hits a node or an edge. 

In case (i) the corresponding diagonal of the matrix will become zero or close to zero during the 
forward elimination of the equation system. If the diagonal element is less than E, = lo-*', a new 
stochastic direction is generated with a random number generator available as a library function. 

In case (ii), when the line hits an edge or a node of a boundary element, one or more of the area 
co-ordinates Lk=O for k =  1, 2 3. If the absolute value of at least one Lk is less than E,, a new 
direction of the line is generated stochastically in the same way. 

The two tests described above have proved to be very robust against failure in practice. If 
failure does occur, which can be easily seen from the boundary plot of the domain, the failure is 
corrected by simply increasing E,. The line intersects the interior of the triangle if 0 < Lk < 1 for 
k =  1, 2, 3. 

All tri-tree elements are then checked and the elements with all nodes outside the computa- 
tional domain are discarded and not considered for further processing. 

TRI-TREE BALANCING 

In order to obtain a smooth interface between triangles and tetrahedra with different levels, some 
rules are introduced on these interfaces. An arbitrary two-dimensional triangulation is shown in 
Figure 5. From this figure it is seen that each corner and centre triangle contains more than one 
node on one of its sides. This node distribution would lead to very narrow triangles, which would 
be disadvantageous when integrating the differential equations over the elements. The triangula- 
tion in Figure 5 is therefore balanced so that no triangle has more than one excess node on one of 
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Figure 5. A triangle is first divided until the desired degree of refinement is obtained. The triangulation shown is arbitrary 
and it can be seen that such corner triangle has several nodes on one if its edges. A triangulation of this structure will result 

in very narrow triangles 

f i  
Figure 6. The triangular structure in Figure 5 is balanced so that no  triangle has more than one node on one of its edges 
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Figure 7. The triangulated grid from the tri-tree structure in Figure 6 .  The triangles which deviate most from equilateral 
shape are those having a right angle 

its sides. Figure 6 shows the result of the balancing procedure. After balancing the tree, the tri-tree 
structure is triangulated as in Figure 7. 

In three dimensions the balancing procedure is slightly more complicated, since more rules 
have to be applied to obtain a valid grid. Figures 8 and 9 show the two allowed ways of 
subdividing the equilateral tetrahedra into finite elements. In Figure 8 the tetrahedron is divided 
into two and in Figure 9 into four finite elements. These subdivisions show the finite elements 
which deviate most from the equilateral shape. An arbitrary three-dimensional triangulation is 
shown in Figure 10. After balancing this triangulation, the mesh of tetrahedra has the structure 
shown in Figure 11. Figure 12 show the triangulation of the balanced three dimensional tri-tree 
structure. 

Let L, be the level number of equilateral triangle or tetrahedron p and let L, be the level 
number of its neighbours n. Let n,  and n, be the numbers of neighbours with level number less 
than and greater than tree element p respectively. The refinement algorithm is then given by 

Algorithm 1 

1 
2 
3 
4 
5 
6 

if L,<L,-l Refine@) 
if L,>L,+l Refine(n) 

if L,.cL, n l = n l + l  
if n , > l  Refine( p) 
if nI>O and n,>O Refine(m) 

if L,> L, tl,=n,+l 

In line 1 the level of each tree element is compared to the level of its neighbours. If the level of 
a tree element is less than the level of a neighbour minus one, then the element is refined. 
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Figure 8. An equilateral tetrahedron may be divided into two finite elements depending on the division of the 
neighbouring elements 

Figure 9. An equilateral tetrahedron may also be divided into four finite elements. Although the shape of these elements 
deviates most from equilateral shape, they still have an excellent shape well suited for integration 
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Figure 10. An arbitrary tri-tree structure of tetrahedra 

Figure 11 .  The tri-tree structure of the tetrahedra shown in Figure 10 is balanced similar to the balancing in two 
dimensions. However, the balancing procedure in three dimensions is more complicated 
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Figure 12. Finite element tetrahedra generated from the balanced tri-tree structure in Figure 11 

In line 2 a neighbouring tree element is refined if the level of the actual element is greater than that 
of the neighbouring element plus one. In lines 3 and 4 the numbers of neighbouring elements 
which have greater and smaller levels respectively are counted. In line 5 a tree element is refined if 
more than one neighbour has a smaller level. In line 6 a neighbouring tree element with the 
smallest level number is refined if an element has neighbours with both smaller and greater level 
numbers. 

In three dimensions more rules have to be applied to ensure the generation of valid finite 
elements. Let nm be the number of midpoint nodes at the edges of the tetrahedron: 

Algorithm 2 

7 

8 
9 

10 
11 

if n m # l  and n,#3 

if L,<L, Refine(p) 
if L,> L, Refine(n) 

{ 

1 
After Algorithm 1 is applied there will only be nodes at the midpoints of the edges of the 

tetrahedra. If the number of midpoint nodes is different from one and three, the element itself, or 
the neighbouring elements which also contain one of these nodes, is refined depending on which 
has the smallest level number. 

The additional rules applied in three dimensions can also be applied in two dimensions, 
although it is not necessary. However, if these rules are included, the algorithm will be identical in 
both two and three dimensions. 

Both Algorithms 1 and 2 are applied iteratively. First Algorithm 1 is repeated until no 
refinement occurs. Then Algorithm 2 is applied. If a refinement occurs, Algorithm 1 has to be 
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applied once more. The whole balancing procedure terminates when no refinements occur either 
in Algorithm 1 or in Algorithm 2. 

TRIANGULATION O F  THE TRI-TREE 

After the balancing procedure the tri-tree is valid for triangulation. In two dimensions there is at 
most one node at the midpoint of one of the edges of the triangles. This tri-tree triangle is divided 
into two finite element triangles as shown in Figure 7 (see also Figure 17). In three dimensions the 
situation is more complex. Each equilateral tri-tree tetrahedron can have either one node on one 
of the edges as in Figure 8, or three nodes at the edges of one of the sides as in Figure 9. If there is 
one node at one edge, the tetrahedron is divided in two as in Figure 8. If there are three nodes at 
the edges of one side, the tetrahedron is divided into four finite element tetrahedra as in Figure 9. 
The triangulation procedure is only applied to tri-tree elements which are inside the computa- 
tional domain. When the tri-tree is triangulated, the finite elements are kept in a finite element 
structure and the tri-tree structure is stored to be used later when the grid is adapted to the 
solution. 

TRIANGULATION OF THE NORTH SEA-SKAGERRAK 

The topology of the North Sea-Skagerrak is available as an equidistant regular grid in the 
horizontal plane with the depth given at the grid points. The distance between grid points is 
dx =dy = 6173.33 m. The rectangular grid is first converted to triangular finite elements describ- 
ing the bottom boundary. Elements which have all nodes on land are excluded. The coast line and 
the boundary line in the North Sea and the English Channel are described by line segments found 
from the topology matrix. 

The triangulation in two dimensions starts with the boundary shown in Figure 13. The 
boundary is circumscribed by an initial triangle which is the root of the tri-tree. The level of 
refinement is given on this boundary and the initial triangle is refined until the desired level of 
refinement is obtained. For every point on the boundary the tri-tree is searched to find the 
terminal containing the boundary point. By looking at the refinement level of this triangle, 
a decision is made on further refinement. This process is an iterative process which continues until 
the triangles containing the boundary points are refined satisfactorily. However, this refinement is 
not sufficient since there may be boundary tri-tree triangles which do not contain boundary 
points. Therefore all tri-tree elements which have at least one node inside and one node outside 
the boundary are correspondingly refined. This refinement process is also an iterative process. 

Figure 14 shows the refinement of the initial triangle along the boundary. The result obtained 
by removing the elements outside the boundary is shown in Figure 15. As seen from this figure, 
there are several tri-tree triangles which have more than one node on one of their side edges. To 
obtain a tri-tree structure with at most one node on one of the edges of the triangles, the tri-tree is 
balanced. The balanced tri-tree is shown in Figure 16. The balanced tri-tree is the basis for the 
final triangulation. The tri-tree elements which have neighbours with the same or smaller level 
numbers are used directly as finite elements. The tri-tree elements which have elements with 
a greater level number on one side are divided into two finite elements. The final triangulation is 
shown in Figure 17. 

A contour map of the North Sea-Skagerrak is shown in Figure 18. The depth in the North 
Sea-Skagerrak is seen to vary considerably, especially along the coast of Norway. The contour 
map can also be presented in three dimensions as in Figure 19. The depth is scaled with respect to 
the horizontal co-ordinates. From this angle of view the variation of depth is even clearer than in 
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Figure 13. The two-dimensional North Sea-Skagerrak area which is to be triangulated. The initial triangle includes the 
area to be triangulated. This initial triangle is refined until the desired degree of refinement is achieved 

Figure 14. A tri-tree structure of the triangulated North Sea-Skagerrak area. The level of refinement is specified at 
boundary contours 
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Figure 15. A magnified tri-tree structure of the North Sea-Skagerrak area with tri-tree elements outside the computa- 
tional domain removed 

_- 

Figure 16. The tri-tree structure of the North Sea-Skagerrak area is balanced so that no tri-tree element has more than 
one node at the midpoint of one of the edges 
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Figure 17. The triangular finite elements of the tri-tree structure in Figure 16 

Figure 18. The iso-level contours of depth in the North Sea-Skagerrak area. The depth in the Norwegian Deep is seen to 
be much greater than in other parts of the area 
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Figurel8. In Figure 20 the three-dimensional contour map is included in the initial tetrahedron. 
The level of refinement is specified at the bottom and at the inflow-outflow boundaries. The 
triangulation follows the same procedure as in two dimensions. First the tri-tree elements which 
include boundary points are refined iteratively to the specified level. Since not all boundary 
elements include such points, the tri-elements which cut the boundary surface are then refined 
iteratively. Figure 21 shows the boundary surface of the triangulated volume with a specified 
refinement level equal to seven. This means that the size of the edges of the finest tri-tree elements 
is 1/26 times the length of the edge of the initial tetrahedron. The general formula for this length is 

d = D/2”- I, (19) 

where d is the size of the edge of the finest element, D is the length of the side of the initial 
tetrahedron and n is the level of refinement. The boundary surface with a refinement level of eight 
and nine is shown in Figures 22 and 23 respectively. 

DISCUSSION 

In the present work a new unstructured grid generation algorithm is developed. The algorithm 
allows the generation of finite elements of different sizes. It is therefore possible to have a finer grid 
at the boundaries as demonstrated in Figure 17 and to adapt the grid to the solution of the 
differential equations. A grid which is adapted to the topology will then serve as a basis grid for 
further refinement. When the solution of the differential equations is found, the basis grid can be 
further refined to resolve interesting gradients in the solution. 

Figure 19. A three-dimensional representation of the same iso-level contours as in Figure 18, showing even more clearly 
the contrast in depth between the Norwegian Deep and the rest of the area 
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Figure 20. A three-dimensional representation of the volume to be filled with tetrahedra contained in the initial tri-tree 
tetrahedron 

Figure 21. A coarse three-dimensional tetrahedrization of the computational domain. The level of refinement at the 
boundary surfaces is seven. Only those sides of the tetrahedra which coincidence with the boundary are shown 
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Figure 22. A tetrahedrization with higher resolution than shown in Figure 21. The level of refinement is eight 

Figure 23. The tetrahedrization of the North Sea-Skagerrak with the highest reslution computed. The refinement level is 
nine. With respect to the accuracy and resolution of the background data, an increase in refinement level would not reveal 

more details of the topology 
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The refinement criterion in the present work is to specify the level number at  points on the 
boundary. Other refinement criteria can easily be introduced. Such criteria might be to specify the 
level numbers at points inside the computational domain or to relate the size of the gradients in 
the solution to the level number. 

At the interface between tri-tree elements of different size the equilateral tri-tree elements in two 
dimensions are divided into two and in three dimensions into two or four. The grid generation 
algorithm is optimal with respect to integration properties for a grid with variable degree of 
refinement. The algorithm guarantees that no element is distorted more in shape than shown in 
Figures 7-9. 

In the quad-/oct-tree algorithm, templates are investigated for each terminal cell in order to 
find a triangulation to ensure compatibility between elements.* When elements degenerate, 
‘Delauney’ points are substituted to obtain better shaped elements. When triangulation has been 
performed, a Laplacian filter is used to obtain a better geometry of the elements. The present 
method seems simpler and more efficient since there is no need for template matching. The 
elements obtained by the present algorithm are geometrically well shaped. The deviations from 
equilateral shapes of the triangles and tetrahedra are very mild and caused by the local 
refinements of the mesh. A smoothing filter would ensure greater smoothness in the mesh with 
respect to the area of each element. However, at interfaces between elements of different size 
a smoothing filter would also change the angles between the edges and sides inside these elements. 
This change would probably be unfortunate for the integration procedure of the finite element 
equations. 

The disadvantage with ‘Delauney’ triangulation, described by Baker,7 is the possibility of 
algorithmic failure. When algorithmic failure occurs, different failures have to be treated specially. 
One problem with ‘Delauney’ triangulaton is to decide whether a new point is inside the 
circumscribing sphere of an existing tetrahedron or not.’ This problem arises whether the mesh is 
fine or coarse. To reduce failures, high-precision arithmetic and 64 bit real representation are 
necessary. With the present algorithm a new point in the tri-tree structure is generated by 
bisection of line segments between two already existing points. If this point already exists in the 
tri-tree structure, it must have been generated from bisection of the line between the same two end 
points. It is therefore very probable that the new point and the existing point will have the same 
binary represenation. However, a tolerance is introduced in the decision as to whether two points 
are identical or not. If this tolerance is set to less than half the smallest expected distance between 
points, no failure will occur. With the present method, single-precision arithmetic and 32 bit real 
representation have been used. No algorithmic failure due to inaccurate representation of real 
numbers has so for been detected. 

The tri-tree structure reveals properties which seem ideal for using multigrid methods in 
solving the differential equations. Such methods will be investigated in the near future. 
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